

Dr. Anand Gupta Mr Makesh Kapil 09356511518 09888711209 anandu71@yakoo.com mkapil_foru@yakoo.com

Preparation of Diazonium salts

iodobenzene

Professor Charles Friedel and Professor James Crafts

HALOGENATION

The Halogen is polarised

Aromatic Compounds are resonance stabilized This gives them added stability They undergo Electrophilic Substitution Reactions Upon substitution, the fast step is the loss of a proton to regenerate aromaticity

Regenerate the catalyst – so only a small amount is required

Reactions of arylhalides

• Reactions

Alkyl halides react by $S_N 1$ and $S_N 2$ mechanisms

Simple aryl halides (and vinyl halides) are unreactive towards nucleophilic substitution e.g.

H₂C=CH-CI $\xrightarrow{hot aq. NaOH}$ NO SUBSTITUTION But CH₃CH₂CI $\xrightarrow{hot aq. NaOH}$ CH₃CH₂OH

C – Halogen bonds of aryl (and vinyl) halides are shorter and stronger than those of alkyl, allylic and benzylic halides

(and other resonance forms)

Note the double-bond character of the C – X bond of aryl and vinyl halides.

Aryl halides and vinylic halides are relatively unreactive toward nucleophilic substitution under conditions that give facile nucleophilic substitution with alkyl halides.

Reason:

- (1) Phenyl cations are very unstable.
- (2) Halogen bonds of aryl (and vinylic) halides are shorter and stronger than those of alkyl, allylic, and benzylic halides because of the hybridized state and the resonance.

But aryl halides can be remarkably reactive toward nucleophiles if they bear certain substituents or when we allow them to react under the proper conditions. So <u>NORMALLY</u>, aryl halides will not undergo nucleophilic aromatic substitution.

Some factors/conditions which allow aryl halides to undergo nucleophilic substitution

- A. When strong electron-withdrawing groups, (e.g. NO_2) are ortho- or para- to the halogen atom.
- *B.* When the aryl halides are allowed to react under forcing conditions e.g. aqueous NaOH, high P and T ~ 350°C.

Nucleophilic Aromatic Substitution

NB as EW gps are increased, milder rxn conditions suffice. EW gps therefore activate the ring towards NAS

Nucleophilic aromatic substitution

There are two possible mechanism for NAS:

- A) Bimolecular Displacement mechanism (BDM) or the *addition-elimination* or S_NAr mechanism or the occurs when powerful EW substituents are on the ring.
 BDM results in *ipso* substitution, i.e., substitution at an atom that already had a substituent.
- B) Elimination-addition mechanism

Nucleophilic Aromatic Substitution

The *Meissenheimer complex* is stablized by EW gps o or p to the halogen.

Especially stable. -ve charges are on the O-atoms

In the last step the C-Cl bond is cleaved because it is more polar, making Cl⁻ a better leaving gp.

Benzyne Mechanism

Benzyne - unstable. 3rd bond is due to sp2 – sp2 overlap of orbitals which are perpendicular to the π - orbitals of the aromatic ring.

+

Mechanism:

Carbanion 3 is more stable than 4 because the carbon atom bearing the negative charge is closer to the highly electronegative trifluoromethyl group.

Electrophilic Subtitution Reactions

- Halogenation
- Nitration
- Sulphonation
- Friedel Craft Acylation
- Friedel Craft Alkylation

Reaction With Metals

- Wurtz Reaction
- Wurtz Fittig Reaction
- Fittig Reaction
- Frankland Reaction
- Ullman Reaction
- Reaction with Magnesium

Questions

Q 1: How will you distinguish between Chlorobenzene & benzyl chloride and Chloroethane & bromoethaneQ 2 Why R-I becomes violet or brown on long standing in presence of light.

Q 3: Convert

i) Bromomethane into propanone.

ii) 2-bromobutane to 1-bromobutane

iii) Benzene into biphenyl

Q4: Which reagent can be converted in ethane and methane in single step reactions. Give reactions.

USES OF HALOGENOALKANES

Synthetic The reactivity of the C-X bond means that halogenoalkanes play an important part in synthetic organic chemistry. The halogen can be replaced by a variety of groups via nucleophilic substitution.

Polymers Many useful polymers are formed from halogeno hydrocarbons

Monomer	Polymer	Repeating unit
chloroethene	poly(chloroethene) PVC	- (CH ₂ - CHCI) _n -
tetrafluoroethene	poly(tetrafluoroethene) PTFE	- (CF ₂ - CF ₂) _n -

Chlorofluorocarbons - CFC's

dichlorofluoromethane	CHFCI ₂	refrigerant, aerosol propellant, blowing agent
trichlorofluoromethane	CF ₃ CI	refrigerant, aerosol propellant, blowing agent
bromochlorodifluoromethane	CBrCIF ₂	fire extinguishers

dry cleaning solvent, degreasing agent

PROBLEMS WITH CFC's AND THE OZONE LAYER

CFC's have been blamed for damage to the environment by thinning the ozone layer Ozone absorbs a lot of harmful UV radiation However it breaks down more easily in the presence of CFC's CFC's break up in the atmosphere to form radicals $CF_2CI_2 \longrightarrow CF_2CI_1 + CI_2$ Free radicals catalyse the breaking up of ozone $2O_3 \longrightarrow 3O_2$

CFC's were designed by chemists to help people

Chemists are now having to synthesise alternatives to CFC's to protect the environment

This will allow the reversal of the ozone layer problem

PROBLEMS WITH CFC's AND THE OZONE LAYER

There is a series of complex reactions but the basic process • ozone in the atmosphere breaks down naturally

 $O_3 \longrightarrow O + O_2$

CFC's break down in UV light to form radicals

 $CCI_2F_2 \longrightarrow CI + CCIF_2$ is :-

- chlorine radicals then react with ozone
- chlorine radicals are regenerated
 CIO

 $O_3 + CI \rightarrow CIO + O_2$ CIO + O ---> $O_2 + CI$

Overall, chlorine radicals are not used up so a small amount of CFC's can destroy thousands of ozone molecules before they take part in a termination stage.

Dr. Anand Gupta Mr Makesk Kapil 09356511518 09888711209 anandu71@yakoo.com mkapil_foru@yakoo.com

Alcohols

Nomenclature
Isomerism
Preparation
Properties

Preparation Reactions

- Reduction of carbonyl compounds
- Reduction of Carboxylic acids/Esters
- Hydration of Alkenes
- Grignard reactions

Reduction of Aldehydes/Ketones Hydrogenation

 $\begin{array}{c} R-C-H \xrightarrow{H_2} RCH_2OH \end{array} Primary ROH \\ O \end{array}$

Reduction of Aldehydes/Ketones

Hydride Reductions

Reduction of Carboxylic Acids and Esters

Lithium Aluminum Hydride Reduction

Hydration of Alkenes

- Oxymercuration-Demercuration
- Hydroboration-Oxidation

Acid-Catalyzed Hydration of Alkenes

Markovnikov addition
 Formation of most stable carbocation
 Shifts/rearrangements possible

Hydration of Alkenes via Oxymercuration/Demercuration

Markovnikov addition

Typically no shifts/rearrangements

Mercurinium ion involvement

Hydroboration-Oxidation of Alkenes

Anti-Markovnikov additionNo shifts/rearrangements

Grignard Addition Reactions

- Addition to Aldehydes/Ketones
- Addition to Esters
- Addition to Epoxides

Grignard Additions to Aldehydes/Ketones

Formation of primary, secondary, and tertiary alcohols

Grignard Additions to Esters

Formation of secondary and tertiary alcohols

Tertiary ROH

Typical Alcohol Reactions

- * Salt formation
- * Dehydration
- Oxidation
- * Alkyl halide formation
- ***** Ester formation

- ***** Ether synthesis
- Periodic acid cleavage of glycols
- Haloform reaction of methyl carbinols
- ***** THP acetal formation

Conversion of Alcohols to Salts

Reaction with Active Metals

$\frac{\text{Na}}{\text{ROH}} \rightarrow \frac{\text{Na}}{\text{RO}} + \frac{1}{2}$

Dehydration of Alcohols

Anti periplanar (coplanar) elimination No 1,2-shifts/rearrangements possible

Oxidation of Alcohols

Alcohol Conversion to Alkyl Halides

H Reaction with Hydrogen halides
H Reaction with Thionyl chloride
H Reaction with Phosphorus trihalides or pentahalides

Hydrogen Halide Conversion of Alcohols to Alkyl Halides

RCH 2OH $\xrightarrow{\text{HX}}$ RCH 2X $S_N 2$ predominantly R2CHOH $\xrightarrow{\text{HX}}$ R2CHX $S_N 1$ or $S_N 2$ R3COH $\xrightarrow{\text{HX}}$ R3CX $S_N 1$ predominantly

where HX = HI, HBr, or HCl

Conversion of Alcohols to Alkyl Chlorides via Thionyl Chloride

Conversion of Alcohols to Alkyl Halides via Phosphorus Halides

Ester Formation from Alcohols

$$\begin{array}{c} R - C - OH \xrightarrow{R'OH} R - C - OR' + H_2O \\ H^+ & O \end{array}$$

Periodic Acid Cleavage of Glycols

Haloform Reaction

Methyl carbinol cleavage to give Carboxylic acids and Haloform

Disguising an Alcohol

Creating a tetrahydropyranyl acetal

Overall Transformation

Ethers

- **Properties**
- **Preparation**
- Reactions

Preparation of Ethers

Dehydration of Alcohols Williamson synthesis Alkoxymercuration- Demercuration Peroxyacid Epoxidation of Alkenes

Ether Formation via Acid Catalyzed Dehydration of Alcohols

Williamson Synthesis of Ethers

Bimolecular Substitution by Alkoxide on a suitable substrate

Alkoxymercuration-Demercuration of Alkenes

Markovnikov Addition

☆ Typically no rearrangements/shifts

Mercurinium ion involvement

Epoxidation of Alkenes

Prilezhaev reaction

Ether Reactions

HX Cleavage of Ethers

Unimolecular or Bimolecular Cleavage Pathways

Epoxide Ring Opening

Unimolecular or Bimolecular

