

Dr. Anand Gupta Mr Makesh Kapil 090356511518 09888711209 anandu71@yakoo.com mkapil_foru@yakoo.com

Numerical Roots for Carbon Chains and Branches

Root	Number of Carbon Atoms
meth-	1
eth-	2
prop-	3
but-	4
pent-	5
hex-	6
hepta-	7
oct-	8
non-	9
dec-	10

Alkanes

- Methane CH₄
- Ethane C₂H₆ CH₃CH₃
- Propane C₃H₈ CH₃CH₂CH₃
- Butane C₄H₁₀ CH₃CH₂CH₂CH₃
- Pentane C₅H₁₂ CH₃CH₂CH₂CH₂CH₂CH₃
- Hexane C₆H₁₄ CH₃CH₂CH₂CH₂CH₂CH₂CH₃
- Heptane C₇H₁₆ CH₃-(CH₂)₅-CH₃
- Octane C₈H₁₈ CH₃-(CH₂)₆-CH₃
- Nonane C₉H₂₀ CH₃-(CH₂)₇-CH₃
- Decane C₁₀H₂₂ CH₃-(CH₂)₈-CH₃

Important Prefixes

Substituent	Prefix	Substituent	Prefix
-CH ₃	Methyl	$-C_2H_5$	Ethyl
C ₃ H ₇	Propyl	$-CH(CH_3)_2$	Iso-propyl
$-C_6H_5$	Phenyl	-F	Fluoro
-NO ₂	Nitro	-NO	Nitroso
-OCH ₃	Methoxy	-OH	Hydroxy

Organic	Word Root	Primary	IUPAC Name
Compound		Suffix	
CH ₃ CH ₂ CH ₂ CH ₃	But	ane	Butane
CH ₃ CH=CH ₂	Prop	ene	Propene
НСЩСН	Eth	yne	Ethyne

Secondary Suffix

Class	Functional Group	Secondary Suffix
Alcohol	-OH	-ol
Aldehyde	-CHO	-al
Ketones	>C=O	-one
Carboxylic acids	-COOH	-oic acid
Acid amide	-CONH ₂	-amide
Esters	-COOR	Alkyl oate
Nitriles	-CN	-nitrile
Amines	-NH ₂	-amine
Thiol	-SH	-thiol

Organic compound	Word root	Primary suffix	Secondary suffix	IUPAC Name
CH ₃ CH ₂ OH	Eth	an(e)	-ol	Ethanol
CH ₃ CH ₂ CH ₂ NH ₂	Prop	an(e)	-amine	Propana mine
CH ₃ CH ₂ CH ₂ CO OH	But	an(e)	oic acid	Butanoic acid
CH ₃ CH ₂ CN	Prop	ane	nitrile	Propanen itrile

List of the functional groups

Class of Compound	Functional Group	General Formula	Example
halide (halocarbon)	-F (fluoro-) -Cl (chloro-) Br (bromo-) I (iodo-)	<i>R—X</i> (X represents any halogen)	CH ₃ CHClCH ₃ 2-chloropropane
alcohol	-он	<i>R</i> —ОН	CH ₃ CH ₂ CH ₂ OH 1-propanol
ether	-0-	R—O—R'	${ m CH}_3{ m OCH}_2{ m CH}_3$ methyl ethyl ether
aldehyde	О Н —С—Н	О II R—С—Н	$\begin{array}{c} & O \\ II \\ CH_3CH_2C - H \\ propanal \end{array}$

List of the functional groups

ketone		R - C - R'	$\begin{matrix} \mathbf{O}\\ \mathbf{H}\\ \mathbf{CH}_3\mathbf{CCH}_2\mathbf{CH}_2\mathbf{CH}_3\\ 2\text{-pentanone}\end{matrix}$
organic acid	о Ш —С—ОН	о II <i>R</i> —С—ОН	O II CH ₃ CH ₂ C—OH propanoic acid
ester	0 _C_0_	$\stackrel{O}{\overset{II}{R-C-O-R'}}$	$\stackrel{\textbf{O}}{\underset{\text{CH}_3\text{CH}_2\text{COCH}_3}{\text{methyl propanoate}}}$
amine	– N–	R' = I = R'' $R = N = R''$	CH ₃ CH ₂ CH ₂ NH ₂ 1-propanamine
amide	O II I -C-NH	$\begin{matrix} \mathbf{O} & R' \\ \mathbf{II} & \mathbf{I} \\ R-\mathbf{C-NH} \end{matrix}$	$\begin{matrix} \mathbf{O}\\ \mathbf{H}\\ \mathrm{CH}_3\mathrm{CH}_2\mathrm{C}\mathbf{-}\mathrm{NH}_2\\ \mathrm{propanamide}\end{matrix}$

Isomerism

A. Structural Isomerism

- 1. Chain
- 2. Position
- 3. Functional
- 4. Metamerism
- 5. Tautomerism

- B. Stereomerism
 - 1. Conformations
 - 2. Geometrical
 - 3. Optical

Structural Isomerism

Skeletal or chain Isomerism:- The compounds having same molecular formula but different arrangement of carbon chain within the molecule are called chain isomer.

Position isomerism :- The compound which have same molecular formula but differ in the position of the functional group, carbon-carbon multiple bond or substituent group are called position isomer.

$$\begin{array}{ll} \mathsf{CH}_3 - \mathsf{CH}_2 - \mathsf{CH} = \mathsf{CH}_2 & \mathsf{CH}_3 - \mathsf{CH} = \mathsf{CH} - \mathsf{CH}_3 \\ & \mathsf{But} - 1 - \mathsf{ene} & \mathsf{But} \ 2 \ \mathsf{ene} \end{array}$$

Functional isomerism :- The compound having same molecule formula, but different functional groups in the molecule are called functional isomer.

> CH₃ – CH₂ OH Ethanol

 $CH_3 - O - CH_3$ Methoxy methane **Metamerism :-** The compound having same molecular formula but different number of carbon atoms on either side of functional group are called metamers.

 $CH_3 CH_2 COO CH_2 CH_3 CH_3 COO CH_2 CH_2 CH_3$

Tautomerism :- This is a special type of functional isomerism in which the isomers differ in the arrangement of atoms but they exist in dynamic equilibrium with each other.

Conformations of Alkanes: Rotation About C-C Single Bonds

Stereoisomerism :- The compounds which have the same structural formula but differ in the spatial arrangement of atoms or groups of atoms about the double bond.

o's

Plane-Polarized Light

Light vibrating in all planes \perp to direction of propagation

Plane-polarized light: light vibrating only in parallel planes

© 2006 Brooks/Cole - Thomson

Plane-polarized light the vector sum of left and right circularly polarized light

Optically Activity

Enantiomers (chiral) interact with circularly polarized light rotating the plane one way with *R* center and opposite way with S

© 2006 Brooks/Cole - Thomson

Result: rotation of plane-polarized light clockwise (+) or counterclockwise (-)

Optical Activity

Observed rotation: α , degrees a compound rotates polarized light - dextrorotatory (+) right - levorotatory (-) left

specific rotation $[\alpha]_D^T = \frac{\alpha \text{ (observed, deg.)}}{\alpha \text{ (observed, deg.)}}$ l(dm) [g/mL]

$$[\alpha]_{D}^{21} = +2.6^{\circ} H_{3}C^{\circ} H_{0H}^{\circ}$$

$$H^{\text{LOOH}}_{\text{HO}} CH_3 [\alpha]_{\text{D}}^{21} = -2.6^{\circ}$$

(S)-(+)-lactic acid (R)-(-)-lactic acid

Inductive effect :- It is a process of electron displacement of electrons along the chain of carbon atoms due to the presence of polar covalent bond at one end of the chain is called inductive effect.

Atoms or groups of atoms having electron attracting capacity more than hydrogen are referred to as having – 1 effect.

-I (electron withdrawing)		+I (electron donating)
-NH3 , -NR3	—F	-CH3
$-NO_2$	—C1	-CH ₂ R
–C≡N	-Br	$-CHR_2$
-С-ОН - С-NH ₂ 0 0	—I	-CR ₃
		-c0 - 0 - 0
–С–Н, –С–R Ö Ö		
-OH, -OR		
$-SH \neq -SR$		
—C=C, —C≡C		

Electrometric effect :- The phenomenon of movement of electrons from one atom to another in multibonded atoms at the demand of attacking reagent is called electrometric effect.

1. When transfer of electrons takes place toward the attacking reagent. (+ E)

1. When transfer of electrons takes away from the attacking reagent.(-E)

Resonance or Mesomeric effect :- If a molecule can be assigned two or more structure none of which is capable of describing all the known properties of compound, then the actual structure is in intermediate of these structure.

$$o = c = o \iff \ddot{o} = c \equiv \dot{o}; \iff \dot{o} \equiv c = \ddot{o};$$

Hypercongugation :- The interaction between the electrons of system and the adjacent bond of the substituent groups in organic compounds is called hypercongugation.

Application of Hyper conjugation 1. shortening of carbon – carbon single bonds adjacent to multiple bonds.

2. Stability of methylated alkenes.

Bond Cleavage

Homolytic fission :- The cleavage of covalent bond between two atoms takes place in such a way that each atom retain one electron of the shared pair.

$$\mathbf{A} \cdot | \cdot \mathbf{B} \longrightarrow \mathbf{A} + \mathbf{B}'$$

Heterolytic fission :- Heterolytic fission is unsymmetrical so that one of the fragments takes both the electrons of the shared pair leaving none on oth

$$A:B \longrightarrow A+B \\ A^{+}B^{+}$$

Free Radical :- A free radical may be defined as an atom or group of atoms having an unpaired electron.

Carbonium ion:- It is defined as a groups of atoms which contain positively charged carbon having only six electrons.

(R = H oder organischer Rest, X = Halogen) Carbenium-Ion

Methonium-Ion Carbonium-Ion

Carbanion :- A carbanion may be defined as a species containing a carbon atom carrying a negative charge.

Carbene:- The carbene are reactive neutral species in which the carbon atom has six electrons in their valence shell out of which two are shared.

$$CH_2N_2 \xrightarrow{Light} : CH_2 + N_2$$

Diazomethane Methylane Carbene

Stability of free radical, carbonium ion and carbanion.

Electrophiles:- A positively charged or neutral species which are deficient of electrons and can accept a pair of electrons are called electrophiles. H⁺, H₃O⁺, Cl⁺ AlCl₃, BF₃, SO₃

Nucleophiles :- A nuclophile is a reagent containing an atom having lone pair of electrons.

X⁻, OH⁻, CN⁻, RCOO⁻ (Negatively Charged) NH₃ H₂Ö: (Neutral Molecule)